12MME "MUST-KNOW" QUESTIONS

Mathematical Methods (CAS) **Formulas**

Mensuration

area of a trapezium:

 $\frac{1}{2}(a+b)h$

volume of a pyramid:

curved surface area of a cylinder:

 $2\pi rh$

volume of a sphere:

volume of a cylinder:

 $\pi r^2 h$

area of a triangle:

 $\frac{1}{2}bc\sin A$

volume of a cone:

 $\frac{1}{2}\pi r^2 h$

Calculus

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$$

$$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$$

product rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$

chain rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

 $\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\int \frac{1}{x} dx = \log_e |x| + c$$

 $\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$

 $\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$

quotient rule: $\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

approximation: $f(x+h) \approx f(x) + hf'(x)$

Probability

 $\Pr(A) = 1 - \Pr(A')$

 $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$

 $\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$

transition matrices: $S_n = T^n \times S_0$

mean: $\mu = E(X)$

variance: $var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Probability distribution		Mean	Variance	
discrete	$\Pr(X=x)=p(x)$	$\mu = \sum x \ p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$	
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$	

Ou	estion 3		
a.	Let $f(x) = e^{\cos(x)}$. Find $f'(x)$		
		1 mark	
	A	A 22211.22	
b.	Let $y = x \tan(x)$. Evaluate $\frac{dy}{dx}$ when $x = \frac{\pi}{6}$.		
	W. V		
	,		
		3 marks	
Ou	estion 1		
Let	$f(x) = \frac{x^3}{\sin(x)}. \text{ Find } f'(x).$		
-			
			2 manles
			2 marks
b.	Let $g(x) = \log_e(\tan(x))$. Evaluate $g'\left(\frac{\pi}{4}\right)$.		

Qu	estion 1	
a.	Let $y = (3x^2 - 5x)^5$. Find $\frac{dy}{dx}$.	
b.	Let $f(x) = xe^{3x}$. Evaluate $f'(0)$.	
υ.	Let $f(x) = xe^{-x}$. Evaluate $f'(0)$.	
		2 + 3 = 5 marks
Que	stion 4	
	Differentiate $(x+2)\sqrt{(x-1)}$, giving your answer as a single fraction.	
_		
-		
_		
-		

Question 5
Find the area bounded by the curve of f with equation $f(x) = \frac{1}{2-4x}$, the y-axis and the line $y = 2$. Write
your answer in the form $\frac{a - \log_{\kappa}(b)}{b}$, where a and b are positive integers.

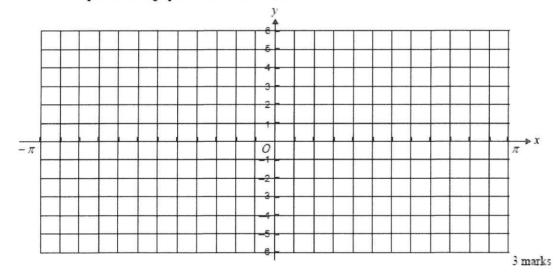
Simplify, by writing $2 \log_{\theta}(3x+1) - \log_{\theta}(x)$ as a single logarithm expression to base θ .	
$1 \div 1 = 2 \text{ marks}$	
restion 2 Solve the equation $\log_{10}(3x+5) + \log_{10}(3) = 3$ for x	
Solve the equation $\log_e (3x + 5) + \log_e (2) = 2$, for x.	
	2 mark
live the equation $2\log_e(x-2) - \log_e(x+1) = \log_e(2)$ for x.	
	3 mark

The	e graph of the function with rule $y = \frac{1}{x}$ is transformed as follows:	
	a dilation by a factor of $\frac{1}{2}$ from the y-axis	
	a reflection in the y-axis	
	a translation of ± 3 units parallel to the x-axis	
	a translation of +1 unit parallel to the y-axis.	
a.	Write down the equation of the rule of the transformed function.	
b.	Hence state the domain and range of the transformed function.	
	1+2=3 marks	
Que	estion 2	
a.	The graph of g is obtained from the graph of the function f with rule $f(x) = x^2$ by a translation parallel to the x-axis. Write down the rule for g.	by +3 units
b.	The graph of h is obtained from the graph of g by a translation by -1 unit parallel to the y -axis, the rule for h .	Write down
c.	The graph of k is obtained from the graph of h by a dilation by a scale factor of 0.5 from the down the rule for k .	v-axis. Write
	1+1+	1 = 3 marks

man common,	$y = 2x^2 + 4x - 5$						
	30-3-4160			44			
	W. P. W						
Use calculus to equation $y = 3$:	o find the area, r + 1 and the par	correct to thre rabola with equ	ee decimal plustion $y = 2x^2$	aces, of the $x + 4x - 5$.	egion boun	ded by the	line
Use calculus tequation $y = 3$:	o find the area, r + 1 and the par	correct to thre rabola with equ	ee decimal plustion $y = 2x^2$	aces, of the $x + 4x - 5$.	egion boun	ded by the	line
Use calculus t equation y = 3:	o find the area,	correct to threabola with equ	the decimal plantion $y = 2x^2$	aces, of the $x + 4x - 5$.	egion boun	ded by the	line
Use calculus t equation $y = 3$.	o find the area, x + 1 and the par	correct to threabola with equ	ee decimal plus plation $y = 2x^2$	aces, of the $x + 4x - 5$.	egion boun	ded by the	line
Use calculus t equation y = 3.	o find the area, $\alpha+1$ and the par	correct to threabola with equ	ee decimal pl nation $y = 2x^2$	aces, of the $x + 4x - 5$.	egion boun	ded by the	line
Use calculus tequation y = 3.	o find the area,	correct to thre rabola with equ	the decimal plant	aces, of the $x + 4x - 5$.	egion boun	ded by the	line
Use calculus t	o find the area,	correct to threabola with equ	ee decimal plus plus plus plus plus plus plus plu	aces, of the $x + 4x - 5$.	egion boun	ded by the	line
Use calculus tequation $y = 3$.	o find the area,	correct to thre	the decimal plant	aces, of the 1 + 4x - 5.	egion boun	ded by the	line
Use calculus t	o find the area,	correct to thre	ee decimal plustion $y = 2x^2$	aces, of the $x + 4x - 5$.	egion boun	ded by the	line
Use calculus tequation $y = 3$.	o find the area,	correct to thre	the decimal plant	aces, of the $x + 4x - 5$.	egion boun	ded by the	

_		
One	stion	3

Find the exact solutions of the equation $\sin(2\pi x)$	$= -\sqrt{3}\cos(2\pi x), \ 0 \le x \le 1.$
---	---


Question 4

For the function
$$f:[-\pi, \pi] \to R$$
, $f(x) = 5\cos\left(2\left(x + \frac{\pi}{3}\right)\right)$

a. write down the amplitude and period of the function

2 marks

b. sketch the graph of the function f on the set of axes below. Label axes intercepts with their coordinates. Label endpoints of the graph with their coordinates.

Questio	n Q
Ancomo	но

Let $f: R \to R$, $f(x) = \sin\left(\frac{2\pi x}{3}\right)$.

		. ($(2\pi x)$	$\sqrt{3}$	_			
a.	Solve the equation s	in	3	= - 2	for	$x \in [0]$	0, 3]	

2 marks

Question	3
Suc seram	-

Solve the equation $\cos\left(\frac{3x}{2}\right) = \frac{1}{2}$ for $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

2 marks

Question 4

A wine glass is being filled with wine at a rate of $8 \text{ cm}^3/\text{s}$. The volume, $V \text{ cm}^3$, of wine in the glass when the depth of wine in the glass is x cm is given by $V = 4x^{\frac{3}{2}}$. Find the rate at which the depth of wine in the glass is increasing when the depth is 4 cm.

PROBABILITY

The diameters of circular mats produced by a machine are normally distributed, with mean 12 cm and standard deviation 1.5 cm.

dev	nation 1.5 cm.
a.	Sketch the normal distribution curve for the diameters of the circular mats produced by the machine.
Ь.	It is known that exactly 16.00 % of mats produced by the machine have a diameter less than k cm. Fin the value of k , correct to one decimal place.
	2 + 1 = 3 mark
Oue	stion 6
30.000	probability density function of a continuous random variable X is given by
	$f(x) = \begin{cases} \frac{x}{12} & 1 \le x \le 5 \\ 0 & \text{otherwise} \end{cases}$
a.	Find Pr $(X \le 3)$.
	2 marks
b.	If $\Pr(X \ge a) = \frac{5}{8}$, find the value of a .

Question 10 Jo has either tea or coffee at morning break. If she has tea one morning, the probability she has tea morning is 0.4. If she has coffee one morning, the probability she has coffee the next morning is 0.3, she has coffee on a Monday morning. What is the probability that she has tea on the following We morning?			
	_		
	_		
3 mar			

	e probability that X is greater than $\$0$
	1 mark
	e probability that $64 \le X \le 72$
_	
_	
_	
	1 mark
ne	e probability that $X \le 64$ given that $X \le 72$.
_	
	2 marks
.32	
40	ion 5 lown that 50% of the customers who enter a restaurant order a cup of coffee. If four customer
	ant, what is the probability that more than two of these customers order coffee? (Assume that
kn	mit, what is the productive and more than two of these easiethers of ser correct. The same the
an ur	ner orders is independent of what any other customer orders.)
an ar	ner orders is independent of what any other customer orders.)
an ur	ner orders is independent of what any other customer orders.)
an ur	ner orders is independent of what any other customer orders.)
an ur	ner orders is independent of what any other customer orders.)
kin Uir	ner orders is independent of what any other customer orders.)

Que	estion 6 1 1			
Two	b events, A and B, from a given event space, are such that $Pr(A) = \frac{1}{5}$ and $Pr(B) = \frac{1}{3}$.			
a.	Calculate $Pr(A' \cap B)$ when $Pr(A \cap B) = \frac{1}{8}$.			
	1 mark			
b.	Calculate $Pr(A' \cap B)$ when A and B are mutually exclusive events.			
	1 mark			
Oue	estion 11			
The that	re is a daily flight from Paradise Island to Melbourne. The probability of the flight departing on time, given there is fine weather on the island, is 0.8, and the probability of the flight departing on time, given that the ther on the island is not fine, is 0.6.			
	farch the probability of a day being fine is 0.4.			
	the probability that on a particular day in March			
a.	the flight from Paradise Island departs on time			
	2 marks			
b.	the weather is fine on Paradise Island, given that the flight departs on time.			

The function

$$f(x) = \begin{cases} k \sin(\pi x) & \text{if } x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

is a probability density function for the continuous random variable X.

a.	Show that $k =$	$\frac{\pi}{2}$
	DIE W WILL TO	2

			1000	
b.	Find Pr	$X \leq$	$\frac{1}{4} \mid X$	$\leq \frac{1}{2}$.

2 + 3 = 5 marks

Jane drives to work each morning and passes through three intersections with traffic lights. The number X of traffic lights that are red when Jane is driving to work is a random variable with probability distribution given by

x	0	1	2	3
Pr(X = x)	0.1	0.2	0.3	0.4

a.	What is the mode of X ?				
b.	Jane drives to work on two consecutive days. What is the probability that the number of traffic lights that are red is the same on both days?				
	1 + 2 = 3 marks				
Eve Cin	ery Friday Jean-Paul goes to see a movie. He always goes to one of two local cinemas – the Dandy or the o. e goes to the Dandy one Friday, the probability that he goes to the Cino the next Friday is 0.5. If he goes to Cino one Friday, then the probability that he goes to the Dandy the next Friday is 0.6.				
	any given Friday the cinema he goes to depends only on the cinema he went to on the previous Friday.				
	e goes to the Cino one Friday, what is the probability that he goes to the Cino on exactly two of the next ee Fridays?				
-					

Question 9 If $X \sim \text{Bi}(5, 0.1)$, find $\text{Pr}(X = 3)$.				
		2 marks		
Qu The	testion 10 The probability density function of a random variable X has a density function given by $f(x) = \begin{cases} x-1 & 0 \le x \le 1 \\ 0.1 & 1 < x \le a \\ 0 & \text{elsewhere} \end{cases}$			
a.	Find the value of a.			
		1 mark		
b.	Find $Pr(X > 0.5)$.			
c.	Find $Pr(X > 2 X > 0.5)$.	l mark		
		2 marks		